论文标题
学习变分数据同化模型和求解器
Learning Variational Data Assimilation Models and Solvers
论文作者
论文摘要
本文从学习的角度解决了变异数据同化。数据同化旨在重建某些状态的时间演变,并有一系列观察结果,可能是嘈杂的和不规则采样的。使用嵌入深度学习框架中的自动分化工具,我们引入了端到端神经网络体系结构以进行数据同化。它包括两个关键组成部分:一个变分模型和一个基于梯度的求解器,均以神经网络实现。拟议的端到端学习体系结构的一个关键特征是,我们可以使用受监督和无监督的策略培训NN模型。我们在Lorenz-63和Lorenz-96系统上进行的数值实验报告了显着增益W.R.T.在重建性能和优化复杂性方面,基于经典的基于梯度的最小化。有趣的是,我们还表明,从真实的Lorenz-63和Lorenz-96 Ode表示产生的变异模型可能不会导致最佳的重建性能。我们认为,这些结果可能会为地球科学中同化模型的规范提供新的研究途径。
This paper addresses variational data assimilation from a learning point of view. Data assimilation aims to reconstruct the time evolution of some state given a series of observations, possibly noisy and irregularly-sampled. Using automatic differentiation tools embedded in deep learning frameworks, we introduce end-to-end neural network architectures for data assimilation. It comprises two key components: a variational model and a gradient-based solver both implemented as neural networks. A key feature of the proposed end-to-end learning architecture is that we may train the NN models using both supervised and unsupervised strategies. Our numerical experiments on Lorenz-63 and Lorenz-96 systems report significant gain w.r.t. a classic gradient-based minimization of the variational cost both in terms of reconstruction performance and optimization complexity. Intriguingly, we also show that the variational models issued from the true Lorenz-63 and Lorenz-96 ODE representations may not lead to the best reconstruction performance. We believe these results may open new research avenues for the specification of assimilation models in geoscience.