论文标题

将七角形符号提升到功能

Lifting Heptagon Symbols to Functions

论文作者

Dixon, Lance J., Liu, Yu-Ting

论文摘要

Planar $ {\ cal N} = 4 $ Super-Yang-Mills理论中的七点振幅以前是通过使用Steinmann Cluster Bootstrap通过四个循环构建的,但仅在符号的级别上。我们通过在特定的二维表面上指定其第一个衍生物和边界条件来将这些符号推广为实际功能。为此,我们施加了分支切割条件,并通过重量六构建了整个七角形功能空间。我们将振幅绘制在批量欧几里得区域的几条线上,并在与多个小聚集体相关的共辅助下探索七孔功能空间的性质。

Seven-point amplitudes in planar ${\cal N}=4$ super-Yang-Mills theory have previously been constructed through four loops using the Steinmann cluster bootstrap, but only at the level of the symbol. We promote these symbols to actual functions, by specifying their first derivatives and boundary conditions on a particular two-dimensional surface. To do this, we impose branch-cut conditions and construct the entire heptagon function space through weight six. We plot the amplitudes on a few lines in the bulk Euclidean region, and explore the properties of the heptagon function space under the coaction associated with multiple polylogarithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源