论文标题

kelvin-voigt阻尼波方程的衰减:分段光滑阻尼

Decay for the Kelvin-Voigt damped wave equation: Piecewise smooth damping

论文作者

Burq, Nicolas, Sun, Chenmin

论文摘要

我们研究了开尔文 - 伏伊氏阻尼波方程的能量衰减速率,并在多维结构域上进行分段平滑阻尼。在对阻尼支持的合适几何假设下,我们获得了最佳多项式衰变率,事实证明,它与\ cite {lr05}中研究的一维情况不同。这种最佳衰减速率被定位在几何光学射线上的高能准模型饱和,这些射线沿着非正交的界面都击中了界面。证明使用边界价值问题的半古典分析。

We study the energy decay rate of the Kelvin-Voigt damped wave equation with piecewise smooth damping on the multi-dimensional domain. Under suitable geometric assumptions on the support of the damping, we obtain the optimal polynomial decay rate which turns out to be different from the one-dimensional case studied in \cite{LR05}. This optimal decay rate is saturated by high energy quasi-modes localised on geometric optics rays which hit the interface along non orthogonal neither tangential directions. The proof uses semi-classical analysis of boundary value problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源