论文标题
在动态图中学习属性结构共同修饰
Learning Attribute-Structure Co-Evolutions in Dynamic Graphs
论文作者
论文摘要
大多数图形神经网络模型都学习静态归因图中节点的嵌入以进行预测分析。最近已经尝试学习节点的时间邻近。我们发现,实际动态归因图显示了节点属性和图形结构的复杂共同进化。学习节点的嵌入,以预测节点属性变化,随着时间的流逝,链接的出生和链接死亡仍然是一个开放的问题。在这项工作中,我们提出了一个名为CoCeVognn的新型框架,用于建模动态归因序列。它通过通过序列嵌入生成来保存早期图对当前图的影响。它具有时间自我注意的机制,可以在进化中对远程依赖性进行建模。此外,CoVognn在两个动态任务(属性推理和链接预测)上共同优化了模型参数。因此该模型可以捕获属性变化和链接形成的共同进化模式。该框架可以适应任何图形神经算法,因此我们基于IT实施并研究了三种方法:coevogcn,covogat和coevosage。实验证明了框架(及其方法)在预测动态社交图和财务图中个人属性和人际关系链接的整个看不见的图表快照方面优于强大的基线。
Most graph neural network models learn embeddings of nodes in static attributed graphs for predictive analysis. Recent attempts have been made to learn temporal proximity of the nodes. We find that real dynamic attributed graphs exhibit complex co-evolution of node attributes and graph structure. Learning node embeddings for forecasting change of node attributes and birth and death of links over time remains an open problem. In this work, we present a novel framework called CoEvoGNN for modeling dynamic attributed graph sequence. It preserves the impact of earlier graphs on the current graph by embedding generation through the sequence. It has a temporal self-attention mechanism to model long-range dependencies in the evolution. Moreover, CoEvoGNN optimizes model parameters jointly on two dynamic tasks, attribute inference and link prediction over time. So the model can capture the co-evolutionary patterns of attribute change and link formation. This framework can adapt to any graph neural algorithms so we implemented and investigated three methods based on it: CoEvoGCN, CoEvoGAT, and CoEvoSAGE. Experiments demonstrate the framework (and its methods) outperform strong baselines on predicting an entire unseen graph snapshot of personal attributes and interpersonal links in dynamic social graphs and financial graphs.