论文标题
联合的自我监督学习多传感器表示的嵌入式智能
Federated Self-Supervised Learning of Multi-Sensor Representations for Embedded Intelligence
论文作者
论文摘要
智能手机,可穿戴设备和物联网(IoT)设备会产生大量数据,这些数据由于隐私,带宽限制和注释的超值而无法在集中式存储库中进行学习监督模型。联合学习为从分散数据学习的学习模型提供了一个令人信服的框架,但通常情况下,它假定标记样本的可用性,而在设备数据通常是未标记的,或者无法通过用户互动轻松注释。为了解决这些问题,我们提出了一种基于小波变换的自我监督的方法\ textIt {scalogram-signal-signal对应学习},以从未标记的传感器输入中学习有用的表示形式,例如脑体积脉冲,加速度计和WiFi通道状态信息。我们的辅助任务需要一个深度的时间神经网络,以确定给定的一对信号及其互补的观点(即用小波变换生成的比例图)是否通过优化对比度目标对齐。我们通过有关各种公共数据集的多视图策略来广泛评估学习功能的质量,从而在所有领域中实现了强劲的性能。我们证明了从未标记的输入收集中学到的表示的有效性,并通过培训通过预验证的网络进行线性分类器,低数据策略,转移学习和交叉验证的有用性。我们的方法可以通过完全监督的网络实现竞争性能,并且在中央和联合环境中,它的表现优于自动编码器预先培训。值得注意的是,它在半监督环境中改善了概括,因为它减少了利用自我监督学习所需的标记数据量。
Smartphones, wearables, and Internet of Things (IoT) devices produce a wealth of data that cannot be accumulated in a centralized repository for learning supervised models due to privacy, bandwidth limitations, and the prohibitive cost of annotations. Federated learning provides a compelling framework for learning models from decentralized data, but conventionally, it assumes the availability of labeled samples, whereas on-device data are generally either unlabeled or cannot be annotated readily through user interaction. To address these issues, we propose a self-supervised approach termed \textit{scalogram-signal correspondence learning} based on wavelet transform to learn useful representations from unlabeled sensor inputs, such as electroencephalography, blood volume pulse, accelerometer, and WiFi channel state information. Our auxiliary task requires a deep temporal neural network to determine if a given pair of a signal and its complementary viewpoint (i.e., a scalogram generated with a wavelet transform) align with each other or not through optimizing a contrastive objective. We extensively assess the quality of learned features with our multi-view strategy on diverse public datasets, achieving strong performance in all domains. We demonstrate the effectiveness of representations learned from an unlabeled input collection on downstream tasks with training a linear classifier over pretrained network, usefulness in low-data regime, transfer learning, and cross-validation. Our methodology achieves competitive performance with fully-supervised networks, and it outperforms pre-training with autoencoders in both central and federated contexts. Notably, it improves the generalization in a semi-supervised setting as it reduces the volume of labeled data required through leveraging self-supervised learning.