论文标题

具有四阶微分方程的现场理论

Field Theory with Fourth-order Differential Equations

论文作者

Li, Rui-Cheng

论文摘要

我们引入了新的Higgs类型复杂值标量字段$ u $,并带有Feynman繁殖器$ \ sim 1/p^4 $,并考虑在树级的有效电位的观点,具有传播器$ \ sim 1/p^2 $的传统场。有了一些关于融合和因果关系的特殊假设,田地$ u $产生了大量的潜在形式,例如线性,对数和库仑电势,它们可能充当诸如限制,暗能量,深色物质,暗物质,电磁症和引力等效果的来源。此外,在某些限制情况下,我们会得到一些推论,例如:非线性klein-gordon方程,线性QED,具有生成结构的质谱以及尺度对称性和风味对称性的Seesaw机制;而且,繁殖者$ \ sim 1/p^4 $将提供一种构建可重学重力理论并解决非扰动问题的可能方法。

We introduce a new class of higgs type complex-valued scalar fields $U$ with Feynman propagator $\sim 1/p^4$ and consider the matching to the traditional fields with propagator $\sim 1/p^2$ in the viewpoint of effective potentials at tree level. With some particular postulations on the convergence and the causality, there are a wealth of potential forms generated by the fields $U$, such as the linear, logarithmic, and Coulomb potentials, which might serve as sources of effects such as the confinement, dark energy, dark matter, electromagnetism and gravitation. Moreover, in some limit cases, we get some deductions, such as: a nonlinear Klein-Gordon equation, a linear QED, a mass spectrum with generation structure and a seesaw mechanism on gauge symmetry and flavor symmetry; and, the propagator $\sim 1/p^4$ would provide a possible way to construct a renormalizable gravitation theory and to solve the non-perturbative problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源