论文标题
在Stiefel歧管上学习常见的谐波波 - 一种用于大脑网络分析的新数学方法
Learning Common Harmonic Waves on Stiefel Manifold -- A New Mathematical Approach for Brain Network Analyses
论文作者
论文摘要
融合的证据表明,与疾病相关的大脑改变不会出现在随机的大脑位置,而是其空间模式遵循大规模的大脑网络。在这种情况下,具有数学基础的强大网络分析方法是必不可少的,以了解整个大脑中传播的神经病理事件的机制。实际上,每个大脑网络的拓扑都由其天然谐波波的支配,这是源自基础Laplacian基质的特征系统的一组正交基础。为此,我们提出了一个新型的Connectome谐波分析框架,以通过检测与脑部疾病相关的基于频率的变化来提供增强的数学见解。我们框架的骨干是一种新型的歧管代数,适用于跨谐波的推论,该代数克服了对不规则数据结构使用经典的欧几里得操作的局限性。单个谐波差异是通过从单个特征系统群中学到的一组常见的谐波波来衡量的,在该系统中,每个本地本征系统都被视为从Stiefel歧管中抽取的样本。具体而言,量身定制了一种多种优化方案,以找到位于Stiefel歧管中心的常见谐波波。为此,常见的谐波波构成了理解疾病进展的新神经生物学基础。每个谐波波都表现出传播在大脑网络中的神经病理负担的独特传播模式。通过鉴定与阿尔茨海默氏病有关的基于频率的变化,我们的新型Connectome谐波分析方法的统计能力得到评估,在该改变中,我们基于学习的歧管方法发现与欧几里得方法相比,我们的基于学习的流形方法发现了更重要和可重复的网络功能障碍模式。
Converging evidence shows that disease-relevant brain alterations do not appear in random brain locations, instead, its spatial pattern follows large scale brain networks. In this context, a powerful network analysis approach with a mathematical foundation is indispensable to understand the mechanism of neuropathological events spreading throughout the brain. Indeed, the topology of each brain network is governed by its native harmonic waves, which are a set of orthogonal bases derived from the Eigen-system of the underlying Laplacian matrix. To that end, we propose a novel connectome harmonic analysis framework to provide enhanced mathematical insights by detecting frequency-based alterations relevant to brain disorders. The backbone of our framework is a novel manifold algebra appropriate for inference across harmonic waves that overcomes the limitations of using classic Euclidean operations on irregular data structures. The individual harmonic difference is measured by a set of common harmonic waves learned from a population of individual Eigen systems, where each native Eigen-system is regarded as a sample drawn from the Stiefel manifold. Specifically, a manifold optimization scheme is tailored to find the common harmonic waves which reside at the center of Stiefel manifold. To that end, the common harmonic waves constitute the new neuro-biological bases to understand disease progression. Each harmonic wave exhibits a unique propagation pattern of neuro-pathological burdens spreading across brain networks. The statistical power of our novel connectome harmonic analysis approach is evaluated by identifying frequency-based alterations relevant to Alzheimer's disease, where our learning-based manifold approach discovers more significant and reproducible network dysfunction patterns compared to Euclidian methods.