论文标题
拓扑绝缘子双层中的Majorana角的Kramers对
Kramers pairs of Majorana corner states in a topological insulator bilayer
论文作者
论文摘要
我们考虑了一个由两个隧道耦合的二维拓扑绝缘子组成的系统,由顶部和底部超导体接近,它们之间的相位差为$π$。我们表明,该系统表现出一个时间反转的二阶拓扑超导相位,其特征是在矩形样品的所有四个角落都存在Kramers对的一对Majorana角状态。此外,我们还研究了弱的时反转对称性打破扰动的效果,并表明平面内的Zeeman场导致一个更丰富的相图显示出两个非级别的阶段,每个角落每个角落两个Majorana Corne and Chere阶段,每个角只有一个Maparana Corter状态。我们从描述系统的连续模型中分析得出结果。此外,我们还使用模型的离散晶格表示对所得阶段提供了独立的数值确认,这使我们能够证明拓扑阶段和Majoraga拐角状态的稳健性,以防止参数变化和潜在障碍。
We consider a system consisting of two tunnel-coupled two-dimensional topological insulators proximitized by a top and bottom superconductor with a phase difference of $π$ between them. We show that this system exhibits a time-reversal invariant second-order topological superconducting phase characterized by the presence of a Kramers pair of Majorana corner states at all four corners of a rectangular sample. We furthermore investigate the effect of a weak time-reversal symmetry breaking perturbation and show that an in-plane Zeeman field leads to an even richer phase diagram exhibiting two nonequivalent phases with two Majorana corner states per corner as well as an intermediate phase with only one Majorana corner state per corner. We derive our results analytically from continuum models describing our system. In addition, we also provide independent numerical confirmation of the resulting phases using discretized lattice representations of the models, which allows us to demonstrate the robustness of the topological phases and the Majorana corner states against parameter variations and potential disorder.