论文标题

在对流陷阱下运输

Transport under advective trapping

论文作者

Hidalgo, Juan J., Neuweiler, Insa, Dentz, Marco

论文摘要

当溶质进入异质多孔介质中的低速区域时,就会发生对流陷阱。经典的局部建模方法将缓慢的对流和扩散的影响结合到流体动力分散系数中,许多时间非本地方法将这些机制汇总到单个内存函数中。这种联合处理使参数化变得困难,因此大规模运输的预测成为挑战。在这里,我们研究了对流诱捕的机制及其对由高电导率背景和孤立低渗透性包含物组成的介质中的影响。突破性曲线表明,随着纳入布置的无序程度的增加,有效的运输从类似流管的行为变为真正的随机陷阱。我们使用Lagrangian的观点来对此行为进行更高的调整,其中理想化的溶质颗粒在随机的对流时间与Poissonian对流诱捕事件结合在一起。我们讨论了在连续的时间随机步行和移动IMMOBILE传质框架中进行扫描模型的数学公式,并得出了用于大型溶质非叉质分散体的模型。这些发现为高度异构媒体的运输提供了新的见解。

Advective trapping occurs when solute enters low velocity zones in heterogeneous porous media. Classical local modeling approaches combine the impact of slow advection and diffusion into a hydrodynamic dispersion coefficient and many temporally non-local approaches lump these mechanisms into a single memory function. This joint treatment makes parameterization difficult and thus prediction of large scale transport a challenge. Here we investigate the mechanisms of advective trapping and their impact on transport in media composed of a high conductivity background and isolated low permeability inclusions. Breakthrough curves show that effective transport changes from a streamtube-like behavior to genuine random trapping as the degree of disorder of the inclusion arrangement increases. We upscale this behavior using a Lagrangian view point, in which idealized solute particles transition over a fixed distance at random advection times combined with Poissonian advective trapping events. We discuss the mathematical formulation of the upscaled model in the continuous time random walk and mobile-immobile mass transfer frameworks, and derive a model for large scale solute non-Fickian dispersion. These findings give new insight into transport in highly heterogeneous media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源