论文标题
MAME数据集:关于高分辨率和可变形状图像属性的相关性
The MAMe Dataset: On the relevance of High Resolution and Variable Shape image properties
论文作者
论文摘要
在图像分类任务中,最常见的方法是将数据集中的所有图像大小调整到唯一形状,同时将其精度降低到促进规模实验的尺寸。这种做法从计算的角度受益,但由于信息丢失和图像变形而导致性能的负面副作用。在这项工作中,我们介绍了MAME数据集,该数据集是具有显着高分辨率和可变形状属性的图像分类数据集。 MAME的目的是提供一种工具,用于研究此类属性在图像分类中的影响,同时激励该领域的研究。 MAME数据集包含来自三个不同博物馆的数千件艺术品,并提出了一项分类任务,包括区分由艺术专家监督的29种媒介(即材料和技术)。在查看当前图像分类任务中MAME的奇异性之后,提供了对任务的详尽描述以及数据集统计信息。进行实验以评估使用高分辨率图像,可变形状输入和两个属性的影响。结果说明了使用高分辨率图像时性能的积极影响,同时强调缺乏利用可变形状的解决方案。另一个实验揭示了MAME数据集和原型Imagenet数据集之间的独特性。最后,使用可解释的方法和专家知识对基准进行了检查,以了解有关仍在前进的挑战的见解。
In the image classification task, the most common approach is to resize all images in a dataset to a unique shape, while reducing their precision to a size which facilitates experimentation at scale. This practice has benefits from a computational perspective, but it entails negative side-effects on performance due to loss of information and image deformation. In this work we introduce the MAMe dataset, an image classification dataset with remarkable high resolution and variable shape properties. The goal of MAMe is to provide a tool for studying the impact of such properties in image classification, while motivating research in the field. The MAMe dataset contains thousands of artworks from three different museums, and proposes a classification task consisting on differentiating between 29 mediums (i.e. materials and techniques) supervised by art experts. After reviewing the singularity of MAMe in the context of current image classification tasks, a thorough description of the task is provided, together with dataset statistics. Experiments are conducted to evaluate the impact of using high resolution images, variable shape inputs and both properties at the same time. Results illustrate the positive impact in performance when using high resolution images, while highlighting the lack of solutions to exploit variable shapes. An additional experiment exposes the distinctiveness between the MAMe dataset and the prototypical ImageNet dataset. Finally, the baselines are inspected using explainability methods and expert knowledge, to gain insights on the challenges that remain ahead.