论文标题
在人重新识别的差异空间中,无监督的域的适应
Unsupervised Domain Adaptation in the Dissimilarity Space for Person Re-identification
论文作者
论文摘要
人重新识别(REID)仍然是许多现实词的视频分析和监视应用程序中的一项艰巨任务,尽管随着深度学习的出现(DL)模型,在大型图像数据集中训练了最先进的准确性(DL)模型。鉴于分布的变化通常发生在从源和目标域捕获的视频数据之间,以及缺少来自目标域的标记数据,因此很难适应DL模型以准确识别目标数据。我们认为,对于依靠度量学习的配对匹配器,例如,REID的暹罗网络,无监督的域适应性(UDA)物镜应包括在域之间对齐,而不是对齐域之间的成对差异。此外,差异表示形式更适合设计开放式REID系统,其中身份在源和目标域上有所不同。在本文中,我们提出了一种基于新颖性的最大平均差异(D-MMD)损失,以通过梯度下降来优化对齐的配对距离。从一个人的角度来看,对D-MMD损失的评估很简单,因为轨迹信息允许将距离向量标记为课堂内或类之间。这允许近似目标成对距离的基础分布,以进行D-MMD损耗优化,并因此使源和目标距离分布对齐。三个具有挑战性的基准数据集的经验结果表明,随着源和域分布变得更加相似,提出的D-MMD损失会减少。广泛的实验评估还表明,依靠D-MMD损失的UDA方法可以显着超过基线和最先进的人REID方法,而无需数据增强和/或复杂网络的共同要求。
Person re-identification (ReID) remains a challenging task in many real-word video analytics and surveillance applications, even though state-of-the-art accuracy has improved considerably with the advent of deep learning (DL) models trained on large image datasets. Given the shift in distributions that typically occurs between video data captured from the source and target domains, and absence of labeled data from the target domain, it is difficult to adapt a DL model for accurate recognition of target data. We argue that for pair-wise matchers that rely on metric learning, e.g., Siamese networks for person ReID, the unsupervised domain adaptation (UDA) objective should consist in aligning pair-wise dissimilarity between domains, rather than aligning feature representations. Moreover, dissimilarity representations are more suitable for designing open-set ReID systems, where identities differ in the source and target domains. In this paper, we propose a novel Dissimilarity-based Maximum Mean Discrepancy (D-MMD) loss for aligning pair-wise distances that can be optimized via gradient descent. From a person ReID perspective, the evaluation of D-MMD loss is straightforward since the tracklet information allows to label a distance vector as being either within-class or between-class. This allows approximating the underlying distribution of target pair-wise distances for D-MMD loss optimization, and accordingly align source and target distance distributions. Empirical results with three challenging benchmark datasets show that the proposed D-MMD loss decreases as source and domain distributions become more similar. Extensive experimental evaluation also indicates that UDA methods that rely on the D-MMD loss can significantly outperform baseline and state-of-the-art UDA methods for person ReID without the common requirement for data augmentation and/or complex networks.