论文标题

零星的立方扭转

Sporadic Cubic Torsion

论文作者

Derickx, Maarten, Etropolski, Anastassia, van Hoeij, Mark, Morrow, Jackson S., Zureick-Brown, David

论文摘要

让$ k $为一个数字字段,让$ e/k $为$ k $的椭圆曲线。 Mordell- WEOL定理断言,$ K $ - 合理点$ E(k)$ e $ $ e $形成了有限生成的Abelian集团。在这项工作中,我们完成了有限组的分类,这些分类显示为每立方体数字$ k $ $ k $ of $ e(k)$。 为此,我们确定模块化曲线上的立方点$ x_1(n)$ for \ [n = 21、22、24、24、26、26、28、33、32、33、33、33、33、35、39、39、45、65、121。 $ j_1(2,2n)$)的等级为0。我们还为Conrad,Edixhoven和Stein的广义版本提供了证据,证明了$ j_1(n)上的扭矩(\ Mathbb {q})$是由$ \ text {gal}(\ bar {\ mathbb {q}}/\ mathbb {q})$ - cusps的$ x_1(n)_ {\ bar {\ bar {\ bar {\ mathbb {q}}}} $ for $ n \ n \ leq 55 $,$ n \ neq 54 $ neq 54 $。

Let $K$ be a number field, and let $E/K$ be an elliptic curve over $K$. The Mordell--Weil theorem asserts that the $K$-rational points $E(K)$ of $E$ form a finitely generated abelian group. In this work, we complete the classification of the finite groups which appear as the torsion subgroup of $E(K)$ for $K$ a cubic number field. To do so, we determine the cubic points on the modular curves $X_1(N)$ for \[N = 21, 22, 24, 25, 26, 28, 30, 32, 33, 35, 36, 39, 45, 65, 121.\] As part of our analysis, we determine the complete list of $N$ for which $J_0(N)$ (resp., $J_1(N)$, resp., $J_1(2,2N)$) has rank 0. We also provide evidence to a generalized version of a conjecture of Conrad, Edixhoven, and Stein by proving that the torsion on $J_1(N)(\mathbb{Q})$ is generated by $\text{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$-orbits of cusps of $X_1(N)_{\bar{\mathbb{Q}}}$ for $N\leq 55$, $N \neq 54$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源