论文标题
各向异性,超音速湍流中的磁场波动
Magnetic field fluctuations in anisotropic, supersonic turbulence
论文作者
论文摘要
我们在分子云中观察到的丰富结构是由于强磁场和超音速(湍流)速度波动之间的相互作用所致。速度波动与磁场相互作用,导致它也波动。使用数值模拟,我们探索了此类磁场波动的性质,$ \ vec {ΔB} $,在广泛的动荡的马赫数中,$ \ MATHCAL {M} = 2-20 $(即,从弱压缩到强度到强的压缩性),以及Alfvnn Mach Number (即,从强到弱磁场,$ b_0 $)。我们从磁氢动力学(MHD)方程中得出了可压缩的准静态波动模型,并表明平行于平均磁场平行的速度梯度会导致亚alfvénic流中的可压缩模式,从而预示流动变得不二维的流动,因为在不可压缩的MHD MHD构件中是这种情况。然后,我们将一个分析模型概括为包括$ \ MATHCAL {M} $的磁性波动的大小,并找到$ | | \ vec {ΔB} | =ΔB= C_S \ SQRT {πρ_0} \ Mathcal {M} \ MathCal {M} _ {\ Text {A} 0} $,其中$ C_S $是声速,$ρ_0$是气体的平均密度。这种新的关系非常适合强大的$ b $ - 场地制度。我们继续研究垂直($ b _ {\ perp} $)与并行($ b _ {\ parallel} $)的垂直($ b _ {\ perp} $)之间的各向异性波动与平均正态波动之间的各向异性,我们发现遵循普遍的比例关系,不变性的关系,$ \ mathcal {m {m} $不变。我们提供了$ΔB_ {\ perp} $和$ΔB_ {\ Parallel} $概率密度函数的详细分析,并发现与$ b_0 $对齐的eddies会导致并行波动,从而减少$ b _ {\ parallel} $。我们广泛地讨论了我们波动模型对星际介质中磁化气体的含义。
The rich structure that we observe in molecular clouds is due to the interplay between strong magnetic fields and supersonic (turbulent) velocity fluctuations. The velocity fluctuations interact with the magnetic field, causing it too to fluctuate. Using numerical simulations, we explore the nature of such magnetic field fluctuations, $\vec{δB}$, over a wide range of turbulent Mach numbers, $\mathcal{M} = 2 - 20$ (i.e., from weak to strong compressibility), and Alfvén Mach numbers, $\mathcal{M}_{\text{A}0} = 0.1 - 100$ (i.e., from strong to weak magnetic mean fields, $B_0$). We derive a compressible quasi-static fluctuation model from the magnetohydrodynamical (MHD) equations and show that velocity gradients parallel to the mean magnetic field give rise to compressible modes in sub-Alfvénic flows, which prevents the flow from becoming two-dimensional, as is the case in incompressible MHD turbulence. We then generalise an analytical model for the magnitude of the magnetic fluctuations to include $\mathcal{M}$, and find $|\vec{δB}| = δB = c_s\sqrt{πρ_0}\mathcal{M}\mathcal{M}_{\text{A}0}$, where $c_s$ is the sound speed and $ρ_0$ is the mean density of gas. This new relation fits well in the strong $B$-field regime. We go on to study the anisotropy between the perpendicular ($ B_{\perp}$) and parallel ($ B_{\parallel}$) fluctuations and the mean-normalised fluctuations, which we find follow universal scaling relations, invariant of $\mathcal{M}$. We provide a detailed analysis of the morphology for the $δB_{\perp}$ and $δB_{\parallel}$ probability density functions and find that eddies aligned with $B_0$ cause parallel fluctuations that reduce $B_{\parallel}$ in the most anisotropic simulations. We discuss broadly the implications of our fluctuation models for magnetised gases in the interstellar medium.