论文标题

彗星:协作过滤的卷积维度互动

COMET: Convolutional Dimension Interaction for Collaborative Filtering

论文作者

Lin, Zhuoyi, Feng, Lei, Guo, Xingzhi, Zhang, Yu, Yin, Rui, Kwoh, Chee Keong, Xu, Chi

论文摘要

基于学习的建议模型在推荐技术中起着主导作用。但是,大多数现有方法都假设历史相互作用和嵌入维度彼此独立,因此遗憾地忽略了历史互动和嵌入维度之间的高阶相互作用信息。在本文中,我们提出了一个新的基于学习的模型,称为彗星(卷积维度相互作用),该模型同时模拟了历史相互作用和嵌入维度之间的高阶相互作用模式。具体来说,彗星一开始水平地堆叠历史相互作用的嵌入,这导致了两个“嵌入地图”。通过这种方式,可以通过同时使用不同大小的核的卷积神经网络(CNN)来利用内部相互作用和维度相互作用。然后,应用完全连接的多层感知器(MLP)以获得两个相互作用向量。最后,用户和项目的表示形式由学习的交互向量丰富,可以进一步用于产生最终预测。对各种公共隐性反馈数据集进行的广泛实验和消融研究清楚地表明了我们提出的方法的有效性和合理性。

Representation learning-based recommendation models play a dominant role among recommendation techniques. However, most of the existing methods assume both historical interactions and embedding dimensions are independent of each other, and thus regrettably ignore the high-order interaction information among historical interactions and embedding dimensions. In this paper, we propose a novel representation learning-based model called COMET (COnvolutional diMEnsion inTeraction), which simultaneously models the high-order interaction patterns among historical interactions and embedding dimensions. To be specific, COMET stacks the embeddings of historical interactions horizontally at first, which results in two "embedding maps". In this way, internal interactions and dimensional interactions can be exploited by convolutional neural networks (CNN) with kernels of different sizes simultaneously. A fully-connected multi-layer perceptron (MLP) is then applied to obtain two interaction vectors. Lastly, the representations of users and items are enriched by the learnt interaction vectors, which can further be used to produce the final prediction. Extensive experiments and ablation studies on various public implicit feedback datasets clearly demonstrate the effectiveness and rationality of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源