论文标题
带有双图卷积神经网络的离子液体的温度转移粗粒
Temperature-transferable coarse-graining of ionic liquids with dual graph convolutional neural networks
论文作者
论文摘要
计算机模拟可以提供对离子液体(IL)的机械洞察力,并预测实验未实现的离子组合的性能。但是,ILS在原子和整体运动的时间尺度上遭受了特别大的差异。因此,使用粗粒的模型代替了昂贵的原子模拟,从而模拟了更长的时间尺度和较大的系统。然而,构建定义粗粒系统结构和动力学的均值的多体潜力可能是复杂的,并且在计算上很密集。机器学习对降低维度降低和学习平均力的潜力的关键耦合挑战表现出了巨大的希望。为了改善IL的粗粒,我们提出了一个对全原子经典分子动力学模拟训练的神经网络模型。平均力的潜在表示为两个共同训练的神经网络间原子势,这些势力学学习了耦合的短距离和多体远程分子相互作用。这些原子间电位将温度视为明确的输入变量,以捕获平均力潜力的温度依赖性。该模型以高忠诚度再现结构量,优于捕获动力学时温度独立的基线,概括以看不见的温度,并产生低模拟成本。
Computer simulations can provide mechanistic insight into ionic liquids (ILs) and predict the properties of experimentally unrealized ion combinations. However, ILs suffer from a particularly large disparity in the time scales of atomistic and ensemble motion. Coarse-grained models are therefore used in place of costly atomistic simulations, allowing simulation of longer time scales and larger systems. Nevertheless, constructing the many-body potential of mean force that defines the structure and dynamics of a coarse-grained system can be complicated and computationally intensive. Machine learning shows great promise for the key coupled challenges of dimensionality reduction and learning the potential of mean force. To improve the coarse-graining of ILs, we present a neural network model trained on all-atom classical molecular dynamics simulations. The potential of mean force is expressed as two jointly-trained neural network interatomic potentials that learn the coupled short-range and the many-body long range molecular interactions. These interatomic potentials treat temperature as an explicit input variable to capture the temperature dependence of the potential of mean force. The model reproduces structural quantities with high fidelity, outperforms the temperature-independent baseline at capturing dynamics, generalizes to unseen temperatures, and incurs low simulation cost.