论文标题

非负稀疏分解的DEEPMP

DeepMP for Non-Negative Sparse Decomposition

论文作者

Voulgaris, Konstantinos A., Davies, Mike E., Yaghoobi, Mehrdad

论文摘要

非阴性信号构成了重要的一类稀疏信号。许多算法已经被普遍恢复这种非阴性表示形式,在这种情况下,贪婪和凸出的放松算法是最受欢迎的方法之一。贪婪的技术是低计算成本算法,也已修改以结合表示形式的非负性。已经提出了一种用于匹配追踪(MP)算法的修改,该算法首先选择正系数并使用非负优化技术来保证系数的非神经性。与所有非排量搜索方法一样,贪婪算法的性能与线性生成模型(称为字典)都具有很高的连贯性。我们在这里首先以深层神经网络的形式重新制定了非负匹配追求算法。然后,我们表明,与其他未经训练的贪婪算法相比,训练后提出的模型在精确的恢复性能方面取得了显着改善,同时保持复杂性较低。

Non-negative signals form an important class of sparse signals. Many algorithms have already beenproposed to recover such non-negative representations, where greedy and convex relaxed algorithms are among the most popular methods. The greedy techniques are low computational cost algorithms, which have also been modified to incorporate the non-negativity of the representations. One such modification has been proposed for Matching Pursuit (MP) based algorithms, which first chooses positive coefficients and uses a non-negative optimisation technique that guarantees the non-negativity of the coefficients. The performance of greedy algorithms, like all non-exhaustive search methods, suffer from high coherence with the linear generative model, called the dictionary. We here first reformulate the non-negative matching pursuit algorithm in the form of a deep neural network. We then show that the proposed model after training yields a significant improvement in terms of exact recovery performance, compared to other non-trained greedy algorithms, while keeping the complexity low.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源