论文标题

正方形和多个Dirichlet系列的算术进程

Arithmetic Progressions of Squares and Multiple Dirichlet Series

论文作者

Hulse, Thomas A., Kuan, Chan Ieong, Lowry-Duda, David, Walker, Alexander

论文摘要

我们研究了两个变量的Dirichlet系列,该序列计算了正方形的原始三项算术进程。我们表明,这个多个Dirichlet系列具有Meromormorphic延续至$ \ Mathbb {C}^2 $,并使用Tauberian方法获得了正方形和合理点的算术进程的计数,$ x^2+y^2 = 2 = 2 $。

We study a Dirichlet series in two variables which counts primitive three-term arithmetic progressions of squares. We show that this multiple Dirichlet series has meromorphic continuation to $\mathbb{C}^2$ and use Tauberian methods to obtain counts for arithmetic progressions of squares and rational points on $x^2+y^2=2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源