论文标题
整数的多色小亚集模型$ n $
The Polychromatic Number of Small Subsets of the Integers Modulo $n$
论文作者
论文摘要
如果$ s $是Abelian $ g $的子集,则$ g $的$ s $的$ s $是最大的整数$ k $,因此,$ g $的元素的$ k-$颜色是$ g $的元素,以便每$ g $ in $ g $ in $ g $ in $ g $都获得所有$ k $的颜色。我们确定整数模式组中所有尺寸2或3的所有集合的多色数。
If $S$ is a subset of an abelian group $G$, the polychromatic number of $S$ in $G$ is the largest integer $k$ so that there is a $k-$coloring of the elements of $G$ such that every translate of $S$ in $G$ gets all $k$ colors. We determine the polychromatic number of all sets of size 2 or 3 in the group of integers mod n.