论文标题

用于空间光学模拟计算的元视频

Meta-optics for spatial optical analog computing

论文作者

Abdollahramezani, Sajjad, Hemmatyar, Omid, Adibi, Ali

论文摘要

对高性能计算,功能强大的数据处理系统和大数据的快速增长需求需要新颖的光学设备出现,才能有效地执行苛刻的计算过程。由于其在过去二十年中的前所未有的生长,元视野为空间,频谱和/甚至时间雕刻幅度,相位,极化和/或光波前的分散提供了可行的解决方案。在这篇综述中,我们讨论了最新的开发以及计算元结构的新兴趋势,作为空间光学模拟计算的破坏性平台。详细讨论了基于空间傅立叶变换和格林功能的一般概念的两种基本方法。此外,审查了用于解决各种数学问题的计算光学表面和元结构的数值研究和实验证明,例如,审查了按需应用(例如,边缘检测)所需的多种数学问题(例如,整体分化和卷积方程)。最后,我们探讨了当前的挑战和计算元元素的潜在决议,然后是我们对未来研究方向以及该有前途领域的可能发展的看法。

Rapidly growing demands for high-performance computing, powerful data processing systems, and big data necessitate the advent of novel optical devices to perform demanding computing processes effectively. Due to its unprecedented growth in the past two decades, the field of meta-optics offers a viable solution for spatially, spectrally, and/or even temporally sculpting amplitude, phase, polarization, and/or dispersion of optical wavefronts. In this Review, we discuss state-of-the-art developments as well as emerging trends in computational meta-structures as disruptive platforms for spatial optical analog computation. Two fundamental approaches based on general concepts of spatial Fourier transformation and Green's function are discussed in detail. Moreover, numerical investigations and experimental demonstrations of computational optical surfaces and meta-structures for solving a diverse set of mathematical problems (e.g., integro-differentiation and convolution equations) necessary for on-demand applications (e.g., edge detection) are reviewed. Finally, we explore the current challenges and the potential resolutions in computational meta-optics followed by our perspective on future research directions and possible developments in this promising area.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源