论文标题

动态环境的预测概率路径计划模型

Predictive Probability Path Planning Model For Dynamic Environments

论文作者

Dutta, Sourav, Tran, Tuan, Rekabdar, Banafsheh, Ekenna, Chinwe

论文摘要

动态环境中的路径规划对于高风险应用至关重要,例如无人机,自动驾驶汽车和自动驾驶水下车辆。在本文中,我们在任何给定的环境中为机器人生成无碰撞轨迹,该机器人由于随机移动的障碍而引起的时间和空间不确定性。我们使用两个泊松分布来对机器人在空间和时间上生成的轨迹上的障碍物的运动进行建模,以确定与障碍物碰撞的可能性。通过在时空间隔中智能操纵机器人的速度,采取措施避免障碍物,其中较大的障碍物与机器人的轨迹相交。我们的方法可能会减少计算昂贵的碰撞检测库的使用。根据我们的实验,就安全性,准确性,执行时间和计算成本而言,对现有方法的改善有了显着改善。我们的结果表明,与移动障碍物的预测碰撞数量和实际数量之间的准确性很高。

Path planning in dynamic environments is essential to high-risk applications such as unmanned aerial vehicles, self-driving cars, and autonomous underwater vehicles. In this paper, we generate collision-free trajectories for a robot within any given environment with temporal and spatial uncertainties caused due to randomly moving obstacles. We use two Poisson distributions to model the movements of obstacles across the generated trajectory of a robot in both space and time to determine the probability of collision with an obstacle. Measures are taken to avoid an obstacle by intelligently manipulating the speed of the robot at space-time intervals where a larger number of obstacles intersect the trajectory of the robot. Our method potentially reduces the use of computationally expensive collision detection libraries. Based on our experiments, there has been a significant improvement over existing methods in terms of safety, accuracy, execution time and computational cost. Our results show a high level of accuracy between the predicted and actual number of collisions with moving obstacles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源