论文标题

通过学习的参考解决阶段检索

Solving Phase Retrieval with a Learned Reference

论文作者

Hyder, Rakib, Cai, Zikui, Asif, M. Salman

论文摘要

傅立叶相的检索是一个经典问题,它涉及从其傅立叶系数的幅度测量中恢复图像。传统方法通过迭代(交替)最小化解决了此问题,通过利用有关未知图像结构的一些先验知识。关于傅立叶测量结果中转移和翻转的固有歧义使这个问题特别困难。而且,大多数现有方法使用的几个随机重新启动具有不同的排列。在本文中,我们假设在捕获傅立叶振幅测量值之前,将已知的(学习)参考添加到信号中。我们的方法的灵感来自在全息图中添加参考信号的原理。要恢复信号,我们将迭代阶段检索方法作为一个展开的网络实现。然后,我们使用后背传播来学习参考,该参考为我们提供了固定数量的相位检索迭代的最佳重建。我们在不同条件下对各种数据集进行了许多模拟,发现我们提出的通过展开的网络进行相位检索的方法和学习的参考提供了以固定(小)计算成本的近乎完美的恢复。我们将我们的方法与标准的傅立叶相检索方法进行了比较,并使用学识渊博的参考观察到了显着的性能提高。

Fourier phase retrieval is a classical problem that deals with the recovery of an image from the amplitude measurements of its Fourier coefficients. Conventional methods solve this problem via iterative (alternating) minimization by leveraging some prior knowledge about the structure of the unknown image. The inherent ambiguities about shift and flip in the Fourier measurements make this problem especially difficult; and most of the existing methods use several random restarts with different permutations. In this paper, we assume that a known (learned) reference is added to the signal before capturing the Fourier amplitude measurements. Our method is inspired by the principle of adding a reference signal in holography. To recover the signal, we implement an iterative phase retrieval method as an unrolled network. Then we use back propagation to learn the reference that provides us the best reconstruction for a fixed number of phase retrieval iterations. We performed a number of simulations on a variety of datasets under different conditions and found that our proposed method for phase retrieval via unrolled network and learned reference provides near-perfect recovery at fixed (small) computational cost. We compared our method with standard Fourier phase retrieval methods and observed significant performance enhancement using the learned reference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源