论文标题
$ t_ {2g+1,2} $的表征交替结
A characterization of $T_{2g+1,2}$ among alternating knots
论文作者
论文摘要
令$ k $为Alexander polyenmial $Δ_K(t)= \ sum_ {i = -g}^ga_it^i $的属$ g $交替结。我们表明,如果$ | a_g | = | a_ {g-1} | $,则$ k $是torus结$ t_ {2g+1,\ pm2} $。这是狐狸梯形猜想的特殊情况。证明使用Ozsváth和Szabó在交替结上的工作。
Let $K$ be a genus $g$ alternating knot with Alexander polynomial $Δ_K(T)=\sum_{i=-g}^ga_iT^i$. We show that if $|a_g|=|a_{g-1}|$, then $K$ is the torus knot $T_{2g+1,\pm2}$. This is a special case of the Fox Trapezoidal Conjecture. The proof uses Ozsváth and Szabó's work on alternating knots.