论文标题

拓扑光学和语音界面模式通过同时频段反转

Topological optical and phononic interface mode by simultaneous band inversion

论文作者

Ortiz, O., Priya, P., Rodriguez, A., Lemaitre, A., Esmann, M., Lanzillotti-Kimura, N. D.

论文摘要

界面模式已在电子,光学,声学和纳米音节领域广泛探索。产生它们的一种策略是一维超级晶格中的频段反演。到目前为止,已经探索了这种拓扑状态的大多数实现,以进行一种激发。尽管它具有对互动的操纵和工程的潜力,但同时拓扑限制多种激发的平台仍然是一个开放的挑战。 GAAS/Alas异质结构由于光和声音的内在共定位而表现出增强的光力相互作用。在这项工作中,我们设计,制造和实验研究了基于GAAS/ALAS的多层结构。由于光和声子的同时反转带结构,出现了1.34 eV光子和18 GHz声子的共定位界面模式。我们通过光学反射率和连贯的声子的生成和检测来实验验证了该概念。此外,我们从理论上分析了在布里群散射中呈现共定位状态并推断工程规则的不同拓扑设计的性能。潜在的未来应用包括强大的光力谐振器的工程,与量子井和量子点等活性介质兼容。

Interface modes have been widely explored in the field of electronics, optics, acoustics and nanophononics. One strategy to generate them is band inversion in one-dimensional superlattices. Most realizations of this type of topological states have so far been explored for a single kind of excitation. Despite its potential in the manipulation and engineering of interactions, platforms for the simultaneous topological confinement of multiple excitations remain an open challenge. GaAs/AlAs heterostructures exhibit enhanced optomechanical interactions due to the intrinsic colocalization of light and sound. In this work, we designed, fabricated, and experimentally studied a multilayered structure based on GaAs/AlAs. Due to the simultaneously inverted band structures for light and phonons, colocalized interface modes for both 1.34 eV photons and 18 GHz phonons appear. We experimentally validated the concept by optical reflectivity and coherent phonon generation and detection. Furthermore, we theoretically analyzed the performance of different topological designs presenting colocalized states in time-domain Brillouin scattering and deduce engineering rules. Potential future applications include the engineering of robust optomechanical resonators, compatible with the incorporation of active media such as quantum wells and quantum dots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源