论文标题
通过集体学习的移动应用程序用户界面模块的智能探索
Intelligent Exploration for User Interface Modules of Mobile App with Collective Learning
论文作者
论文摘要
移动应用接口通常由一组用户界面模块组成。如何正确设计这些用户界面模块对于获得移动应用程序的用户满意度至关重要。但是,除了依靠设计师的判断外,几乎没有什么方法可以确定用户界面模块的设计变量。通常,为了验证每个设计变量的关键更改是必要的,需要一个费力的后处理步骤。因此,只有非常有限的设计解决方案可以进行测试。它是时间耗费的,几乎不可能找出最佳的设计解决方案,因为有许多模块。为此,我们介绍了一个框架,该框架可以通过集体机器学习方法快速而智能地探索用户界面模块的设计解决方案。 Feller可以帮助设计师定量测量不同设计解决方案的偏好评分,旨在促进设计人员方便并快速调整用户界面模块。我们对两个现实生活数据集进行了广泛的实验评估,以证明其在BAIDU应用程序中用户界面模块设计的现实案例中的适用性,Baidu应用程序是中国最受欢迎的移动应用程序之一。
A mobile app interface usually consists of a set of user interface modules. How to properly design these user interface modules is vital to achieving user satisfaction for a mobile app. However, there are few methods to determine design variables for user interface modules except for relying on the judgment of designers. Usually, a laborious post-processing step is necessary to verify the key change of each design variable. Therefore, there is a only very limited amount of design solutions that can be tested. It is timeconsuming and almost impossible to figure out the best design solutions as there are many modules. To this end, we introduce FEELER, a framework to fast and intelligently explore design solutions of user interface modules with a collective machine learning approach. FEELER can help designers quantitatively measure the preference score of different design solutions, aiming to facilitate the designers to conveniently and quickly adjust user interface module. We conducted extensive experimental evaluations on two real-life datasets to demonstrate its applicability in real-life cases of user interface module design in the Baidu App, which is one of the most popular mobile apps in China.