论文标题
富有想象力的运营资源理论
Operational Resource Theory of Imaginarity
论文作者
论文摘要
波粒对偶性是量子力学的基本特征之一,引起了描述量子系统状态,动力学和相互作用的副本的使用。自从量子理论的成立以来,已经辩论了复这个是否实际上是必不可少的,或者仅使用实数是否可以使用替代性一致的公式。在这里,我们使用量子资源理论的强大工具在理论上和实验上都攻击了这个长期存在的问题。我们表明,在合理的假设下,如果量子状态仅具有真实的元素,则更容易创建和操纵。这给了想象力的资源理论具有操作意义。我们识别并回答了几个重要问题,其中包括所有量子状态的状态转换问题和任何维度的所有纯状态,以及所有量子状态的近似想象力蒸馏。作为一种应用,我们表明想象力在状态歧视中起着至关重要的作用:存在实际的量子状态,可以通过本地操作和经典交流来完美区分,但是如果当事方之一无法访问想象力,则不能以任何非零概率来区分。我们通过线性光学器件在实验上确认了这一现象,通过局部投影测量对不同的两光子量子状态进行歧视。这些结果证明,复数是量子力学必不可少的一部分。
Wave-particle duality is one of the basic features of quantum mechanics, giving rise to the use of complex numbers in describing states of quantum systems, their dynamics, and interaction. Since the inception of quantum theory, it has been debated whether complex numbers are actually essential, or whether an alternative consistent formulation is possible using real numbers only. Here, we attack this long-standing problem both theoretically and experimentally, using the powerful tools of quantum resource theories. We show that - under reasonable assumptions - quantum states are easier to create and manipulate if they only have real elements. This gives an operational meaning to the resource theory of imaginarity. We identify and answer several important questions which include the state-conversion problem for all qubit states and all pure states of any dimension, and the approximate imaginarity distillation for all quantum states. As an application, we show that imaginarity plays a crucial role for state discrimination: there exist real quantum states which can be perfectly distinguished via local operations and classical communication, but which cannot be distinguished with any nonzero probability if one of the parties has no access to imaginarity. We confirm this phenomenon experimentally with linear optics, performing discrimination of different two-photon quantum states by local projective measurements. These results prove that complex numbers are an indispensable part of quantum mechanics.