论文标题
水基和纯液体闪光灯探测器的MEV尺度性能
MeV-scale performance of water-based and pure liquid scintillator detectors
论文作者
论文摘要
本文介绍了1-KT和50-KT探测器中水基液体闪烁体的性能。与纯水Cherenkov探测器和纯闪烁体检测器的名义模型相比,评估了性能。性能指标包括能量,顶点和角度分辨率,以及能够将Cherenkov与闪烁信号分开的能力,是依赖于Cherenkov /闪烁率的各种粒子识别能力的代表。我们还修改了闪烁光的时间曲线,以研究相同的性能指标,这是升高和衰减时间的函数。我们继续根据它们对某些物理目标的影响,例如太阳中微子和寻找MajoraNA中微子的影响来解释这些结果。这项工作通过使用更完整的检测器模型和完整的重建来支持并验证了先前的结果以及在其中做出的假设。我们确认,在5年的数据获取数据中,高覆盖范围的50 kt检测器能够在CNO中微子通量上具有优于10(1)\%的精度。 1-kt LS检测器,保守的50 \%基准体积为500〜T,可以实现大于5 \%检测的能力。使用液体闪光灯模型,我们发现对正常的层次结构区域的敏感性,对Majorana中微子的正常层次结构区域,其半寿命敏感性为$ t^{0νββ} _ {1/2}> 1.4 \ times 10^{28} $年$年$年$年份,$ the te-tec cl的数据为90 \%Cl,持续10年。
This paper presents studies of the performance of water-based liquid scintillator in both 1-kt and 50-kt detectors. Performance is evaluated in comparison to both pure water Cherenkov detectors and a nominal model for pure scintillator detectors. Performance metrics include energy, vertex, and angular resolution, along with a metric for ability to separate the Cherenkov from the scintillation signal, as being representative of various particle identification capabilities that depend on the Cherenkov / scintillation ratio. We also modify the time profile of scintillation light to study the same performance metrics as a function of rise and decay time. We go on to interpret these results in terms of their impact on certain physics goals, such as solar neutrinos and the search for Majorana neutrinos. This work supports and validates previous results, and the assumptions made therein, by using a more complete detector model and full reconstruction. We confirm that a high-coverage, 50-kt detector would be capable of better than 10 (1)\% precision on the CNO neutrino flux with a WbLS (pure LS) target in 5 years of data taking. A 1-kt LS detector, with a conservative 50\% fiducial volume of 500~t, can achieve a better than 5\% detection. Using the liquid scintillator model, we find a sensitivity into the normal hierarchy region for Majorana neutrinos, with half life sensitivity of $T^{0νββ}_{1/2} > 1.4 \times 10^{28}$ years at 90\% CL for 10 years of data taking with a Te-loaded target.