论文标题
均匀的哈密顿运营商和封面理论
Homogeneous Hamiltonian operators and the theory of coverings
论文作者
论文摘要
一种新的方法(由Kersten,Krasil'shchik和Verbovetsky)根据差分覆盖的理论,允许将PDES系统与差分运算符联系起来,以使操作员将PDES系统的对称性/保守数量映射到对称性/保守数量中。当应用于pDE的准一阶系统和Dubrovin-Novikov均匀的汉密尔顿操作员时,方法会在操作员和具有有趣差异和投射几何解释的系统上产生条件。
A new method (by Kersten, Krasil'shchik and Verbovetsky), based on the theory of differential coverings, allows to relate a system of PDEs with a differential operator in such a way that the operator maps symmetries/conserved quantities into symmetries/conserved quantities of the system of PDEs. When applied to a quasilinear first-order system of PDEs and a Dubrovin-Novikov homogeneous Hamiltonian operator the method yields conditions on the operator and the system that have interesting differential and projective geometric interpretations.