论文标题

在移动的超几何函数的凸度顺序

On the order of convexity for the shifted hypergeometric functions

论文作者

Wang, Li-Mei

论文摘要

在本文中,我们研究了$ z \ gauss(a,b; c; c; z)$的凸度顺序,其中带有实际参数$ a,b $和$ c $其中$ \ gauss(a,b; c; c; z)$是高斯的超角函数。首先,我们通过考虑其渐近行为左右$ z = 1 $,获得了$ z \ gauss(a,b; c; z)$的一些条件,没有任何有限的凸订单。然后,对于一些实际参数$ a,b $和$ c $的范围,证明了$ z \ gauss(a,b; c; z)$的凸的顺序。在最后一部分中,我们给出一些示例作为主要结果的应用。

In the present paper, we study the order of convexity of $z\Gauss(a,b;c;z)$ with real parameters $a, b$ and $c$ where $\Gauss(a,b;c;z)$ is the Gaussian hypergeometric function. First we obtain some conditions for $z\Gauss(a,b;c;z)$ with no any finite orders of convexity by considering its asymptotic behavior around $z=1$. Then the order of convexity of $z\Gauss(a,b;c;z)$ is demonstrated for some ranges of real parameters $a,b$ and $c$. In the last section, we give some examples as the applications of the main results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源