论文标题
正常人:从单个RGB-D图像中学习详细的3D人
NormalGAN: Learning Detailed 3D Human from a Single RGB-D Image
论文作者
论文摘要
我们提出了一种基于对抗性学习的快速方法,可以从单个RGB-D图像中重建完整而详细的3D人。给定单个前视RGB-D图像,normalgan执行了两个步骤:前视RGB-D整流和背面视图RGBD推断。然后,通过简单地将前视和背景RGB-D信息组合来生成最终模型。但是,推断具有高质量几何细节和合理纹理的反向视图RGB-D图像并不微不足道。我们的主要观察结果是:正常地图通常比RGB和深度图像编码3D表面细节的信息更多。因此,从正常地图中学习几何细节比其他表示优越。在正常gan中,引入了一个以普通图为条件的对抗学习框架,它不仅用于改善前视深度降低性能,而且还可以推断出具有令人惊讶的几何细节的背景深度图像。此外,对于纹理恢复,我们根据精制的正常地图从前视RGB图像中删除阴影信息,这进一步提高了背景颜色推断的质量。测试数据集和实际捕获数据的结果和实验证明了我们方法的出色性能。鉴于消费者RGB-D传感器,CormanGan可以生成20 fps的完整3D人体重建结果,这进一步使您可以在远程敏感,AR/VR和游戏方案中获得方便的交互式体验。
We propose NormalGAN, a fast adversarial learning-based method to reconstruct the complete and detailed 3D human from a single RGB-D image. Given a single front-view RGB-D image, NormalGAN performs two steps: front-view RGB-D rectification and back-view RGBD inference. The final model was then generated by simply combining the front-view and back-view RGB-D information. However, inferring backview RGB-D image with high-quality geometric details and plausible texture is not trivial. Our key observation is: Normal maps generally encode much more information of 3D surface details than RGB and depth images. Therefore, learning geometric details from normal maps is superior than other representations. In NormalGAN, an adversarial learning framework conditioned by normal maps is introduced, which is used to not only improve the front-view depth denoising performance, but also infer the back-view depth image with surprisingly geometric details. Moreover, for texture recovery, we remove shading information from the front-view RGB image based on the refined normal map, which further improves the quality of the back-view color inference. Results and experiments on both testing data set and real captured data demonstrate the superior performance of our approach. Given a consumer RGB-D sensor, NormalGAN can generate the complete and detailed 3D human reconstruction results in 20 fps, which further enables convenient interactive experiences in telepresence, AR/VR and gaming scenarios.