论文标题

衡量紧凑型复曲面的理论

Gauge theories on compact toric manifolds

论文作者

Bonelli, Giulio, Fucito, Francesco, Morales, Jose Francisco, Ronzani, Massimiliano, Sysoeva, Ekaterina, Tanzini, Alessandro

论文摘要

我们计算$ {\ cal n} = 2 $通过epariatiant定位在四维紧凑型孢子歧管上的量规理论的超对称分区功能。结果由Kähler形式的分段常数函数给出,并沿着尺寸对称性增强的墙壁跳跃。此类歧管上的分区函数被写为$ \ Mathbb {c}^2 $的分区函数的残基的总和。通过使用将残基与$ \ Mathbb {C}^2 $分区函数相关联的“抽象二元性”,可以大大简化对这些残基的评估。在特殊情况下,我们的公式计算$ \ mathbb {p}^2 $和$ \ mathbb {f} _n $的$ su(2)$和$ su(3)$ {\ it equivariant} donaldson noffariants,在非等效的限制中,并通过$ coss $ cups $ cupss $ cuss $ cuss $ cupss $ cuss $ cupss $ cupss $ cups $ cupss $ cupss $ cupss $ cups $ cupss $ cupss $ cupss $(最后,我们表明$ u(1)$ dual Connections诱导了对量规耦合的异常依赖,事实证明,该连接满足了$ \ Mathcal {n} = 2 $ holomorphic Anomaly Anomaly artomaly aremaly方程。

We compute the ${\cal N}=2$ supersymmetric partition function of a gauge theory on a four-dimensional compact toric manifold via equivariant localization. The result is given by a piecewise constant function of the Kähler form with jumps along the walls where the gauge symmetry gets enhanced. The partition function on such manifolds is written as a sum over the residues of a product of partition functions on $\mathbb{C}^2$. The evaluation of these residues is greatly simplified by using an "abstruse duality" that relates the residues at the poles of the one-loop and instanton parts of the $\mathbb{C}^2$ partition function. As particular cases, our formulae compute the $SU(2)$ and $SU(3)$ {\it equivariant} Donaldson invariants of $\mathbb{P}^2$ and $\mathbb{F}_n$ and in the non-equivariant limit reproduce the results obtained via wall-crossing and blow up methods in the $SU(2)$ case. Finally, we show that the $U(1)$ self-dual connections induce an anomalous dependence on the gauge coupling, which turns out to satisfy a $\mathcal{N}=2$ analog of the $\mathcal{N}=4$ holomorphic anomaly equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源