论文标题

LevelSet R-CNN:一种深层变化方法,例如分割

LevelSet R-CNN: A Deep Variational Method for Instance Segmentation

论文作者

Homayounfar, Namdar, Xiong, Yuwen, Liang, Justin, Ma, Wei-Chiu, Urtasun, Raquel

论文摘要

在许多现代应用中,例如机器人操纵和自动驾驶,获得精确的实例分割口罩非常重要。当前,许多最先进的模型基于蒙版R-CNN框架,虽然非常强大,但在低分辨率下输出口罩,这可能会导致不精确的边界。另一方面,用于分割的经典变分方法通过优化能量功能,对掩模施加了理想的全局和局部数据以及几何约束。虽然在数学上优雅,但它们直接依赖良好的初始化,非舒适图像提示和超参数的手动设置使它们不适合现代应用。我们提出了LevelSet R-CNN,它通过获得以端到端方式与各种分段框架结合的强大特征表示来结合两全其美的最佳。我们证明了我们方法对可可和城市景观数据集的有效性。

Obtaining precise instance segmentation masks is of high importance in many modern applications such as robotic manipulation and autonomous driving. Currently, many state of the art models are based on the Mask R-CNN framework which, while very powerful, outputs masks at low resolutions which could result in imprecise boundaries. On the other hand, classic variational methods for segmentation impose desirable global and local data and geometry constraints on the masks by optimizing an energy functional. While mathematically elegant, their direct dependence on good initialization, non-robust image cues and manual setting of hyperparameters renders them unsuitable for modern applications. We propose LevelSet R-CNN, which combines the best of both worlds by obtaining powerful feature representations that are combined in an end-to-end manner with a variational segmentation framework. We demonstrate the effectiveness of our approach on COCO and Cityscapes datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源