论文标题
$η$ -Pseudo-Hermitic Generator在变形的树林潜力中
The $η$-pseudo-hermitic generator in the deformed Woods Saxons potential
论文作者
论文摘要
在本文中,我们提出了一种使用两个$η$ -Pseudo-Hermetic和一阶运算符的定义来解决PT对称性非热势的通用方法。该发电机适用于狄拉克方程,该方程由两个旋转波函数和非热势组成,位置认为质量被认为是恒定值,也将汉密尔顿层次结构方法和形状不变性属性和形状不变性属性用于执行计算。此外,我们显示了可以根据Schrödinger类似方程式将$η$ -Pseudo-Hermetic的潜在参数与传输概率之间的相关性。通过将此方法用于某些可解决的电位,例如变形的木材撒克逊电势,可以证明这些真实电位可以分解为由$η$ -Pseudo-Hermitic类的特征值组成的复杂电位。
In this paper, we present a general method to solve non-hermetic potentials with PT symmetry using the definition of two $η$-pseudo-hermetic and first-order operators. This generator applies to the Dirac equation which consists of two spinor wave functions and non-hermetic potentials, with position that mass is considered a constant value and also Hamiltonian hierarchy method and the shape invariance property are used to perform calculations. Furthermore, we show the correlation between the potential parameters with transmission probabilities that $η$-pseudo-hermetic using the change of focal points on Hamiltonian can be formalized based on Schrödinger-like equation. By using this method for some solvable potentials such as deformed Woods Saxon's potential, it can be shown that these real potentials can be decomposed into complex potentials consisting of eigenvalues of a class of $η$-pseudo-hermitic.