论文标题

最佳拍打翼运动学的现象学和缩放

Phenomenology and scaling of optimal flapping wing kinematics

论文作者

Gehrke, Alexander, Mulleners, Karen

论文摘要

生物拍打飞行器在各种飞行条件下有效,稳健地运作,是工程师的灵感来源。拍打翅膀的不稳定空气动力学以大规模的涡流结构为主,这些结构增强了空气动力学性能,但对机翼致动的微小变化敏感。我们通过悬停的拍打翼系统的螺距角运动学优化了悬停的螺距角运动学,以最大程度地利用进化算法和原位力和旋翼根部的扭矩测量来最大程度地提高冲程平均升力和悬停效率。进行了其他流场测量值,以将涡流流结构与帕累托最佳运动学的空气动力学性能联系起来。最大的螺距角度曲线产生最大的中风平均升力系数具有梯形形状和高平均攻击角度。这些运动学在周期的早期就产生了强大的前沿涡流,从而增强了机翼的力产生。最有效的螺距角运动学类似于正弦演化,并且具有较低的平均攻击角度。在大多数中风周期中,领先的涡流增长速度较慢,并保持与机翼的距离。这需要更少的空气动力,并提高了悬停效率的93%,但牺牲了最大升力的43%。在所有情况下,前沿涡流都通过前缘剪切层呈涡流供应,这使剪切层速度成为涡旋生长及其对空气动力的影响的良好指标。我们仅从输入运动学中估计前缘处的剪切速度速度,并使用它来扩展循环和空气动力的平均水平和时间分辨的演变。

Biological flapping wing fliers operate efficiently and robustly in a wide range of flight conditions and are a great source of inspiration to engineers. The unsteady aerodynamics of flapping-wings are dominated by large-scale vortical structures that augment the aerodynamic performance but are sensitive to minor changes in the wing actuation. We experimentally optimise the pitch angle kinematics of a flapping wing system in hover to maximise the stroke average lift and hovering efficiency using a evolutionary algorithm and in-situ force and torque measurements at the wing root. Additional flow field measurements are conducted to link the vortical flow structures to the aerodynamic performance for the Pareto-optimal kinematics. The optimised pitch angle profiles yielding maximum stroke-average lift coefficients have trapezoidal shapes and high average angles of attack. These kinematics create strong leading-edge vortices early in the cycle which enhance the force production on the wing. The most efficient pitch angle kinematics resemble sinusoidal evolutions and have lower average angles of attack. The leading-edge vortex grows slower and stays close-bound to the wing throughout the majority of the stroke-cycle. This requires less aerodynamic power and increases the hovering efficiency by 93% but sacrifices 43% of the maximum lift. In all cases, a leading-edge vortex is fed by vorticity through the leading edge shear-layer which makes the shear-layer velocity a good indicator for the growth of the vortex and its impact on the aerodynamic forces. We estimate the shear-layer velocity at the leading edge solely from the input kinematics and use it to scale the average and the time-resolved evolution of the circulation and the aerodynamic forces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源