论文标题
通过PARAFAC分解,慢速MIMO雷达中的联合DOD和DOA估计
Joint DOD and DOA Estimation in Slow-Time MIMO Radar via PARAFAC Decomposition
论文作者
论文摘要
我们开发了一种新的张量模型,用于缓慢的多输入多输出(MIMO)雷达,并将其应用于接线方向(DOD)和到达方向(DOA)估计。该张量模型旨在利用相位调制矩阵的独立性,并在接收的信号中以缓慢的MIMO雷达接收阵列。可以将这种张量分解为两个不同等级的张量,其中一个与MIMO雷达的常规张量模型具有相同的结构,而另一个包含Transmit阵列中使用的所有相位调制值。然后,我们对交替的最小二乘算法进行修改,以使张量的平行因子分解具有额外的常数。然后利用发射和接收转向矩阵的Vandermonde结构(如果两个阵列都是均匀的和线性的)从因子矩阵中获得角度估计。维持接收信号的多线性结构以利用基于张量的角度估计算法,而多普勒域中的样品短缺用于缓慢的MIMO雷达。结果,与慢速MIMO雷达的现有角度估计技术相比,联合DOD和DOA估计性性能得到了提高。仿真结果验证了所提出的方法的有效性。
We develop a new tensor model for slow-time multiple-input multiple output (MIMO) radar and apply it for joint direction-of-departure (DOD) and direction-of-arrival (DOA) estimation. This tensor model aims to exploit the independence of phase modulation matrix and receive array in the received signal for slow-time MIMO radar. Such tensor can be decomposed into two tensors of different ranks, one of which has identical structure to that of the conventional tensor model for MIMO radar, and the other contains all phase modulation values used in the transmit array. We then develop a modification of the alternating least squares algorithm to enable parallel factor decomposition of tensors with extra constants. The Vandermonde structure of the transmit and receive steering matrices (if both arrays are uniform and linear) is then utilized to obtain angle estimates from factor matrices. The multi-linear structure of the received signal is maintained to take advantage of tensor-based angle estimation algorithms, while the shortage of samples in Doppler domain for slow-time MIMO radar is mitigated. As a result, the joint DOD and DOA estimation performance is improved as compared to existing angle estimation techniques for slow-time MIMO radar. Simulation results verify the effectiveness of the proposed method.