论文标题

Lavapilot:轻巧的无人机轨迹计划者,具有嵌入式自治的情境意识,可追踪和找到无线电标签

LAVAPilot: Lightweight UAV Trajectory Planner with Situational Awareness for Embedded Autonomy to Track and Locate Radio-tags

论文作者

Van Nguyen, Hoa, Chen, Fei, Chesser, Joshua, Rezatofighi, Hamid, Ranasinghe, Damith

论文摘要

追踪和定位无线电标签的野生动植物是野生动植物保护中必不可少的劳动密集型且耗时的任务。在本文中,我们着重于为资源有限的空中机器人实现嵌入式自治的问题,以避免避免对野生动植物的不良干扰。我们采用了一个轻巧的传感器系统,能够同时(嘈杂)从多个标签中的无线电信号强度信息进行测量,以估算对象位置。我们制定了一种新的基于任务的轻巧轨迹计划方法 - lavapilot,其中包括一种贪婪的评估策略和一个空白的功能公式,以实现情境意识,以保持与感兴趣的对象的安全距离。从概念上讲,我们嵌入了靠近移动的直觉,以将测量值的不确定性减少到Lavapilot中,而不是采用基于计算密集的信息增益基于计划的计划策略。我们采用Lavapilot和传感器来构建一个具有完全嵌入式自治的轻型空中机器人平台,以共同跟踪和计划跟踪和定位保护生物学家使用的多个VHF无线电项圈标签。我们使用基于蒙特卡洛模拟的实验,单板计算模块上的实现以及使用带有多个VHF无线电领域的空中机器人平台进行现场实验,我们评估了联合计划和跟踪算法。此外,我们将我们的方法与具有和没有情境意识的其他基于信息的计划方法进行了比较,以证明我们执行Lavapilot的机器人的有效性。我们的实验表明,与基于信息增益基于信息增益的计划方法相比,Lavapilot显着降低了计划的计算成本,以实现实时计划决策,同时实现对象的相似本地化准确性,尽管花了更长的时间来完成任务。

Tracking and locating radio-tagged wildlife is a labor-intensive and time-consuming task necessary in wildlife conservation. In this article, we focus on the problem of achieving embedded autonomy for a resource-limited aerial robot for the task capable of avoiding undesirable disturbances to wildlife. We employ a lightweight sensor system capable of simultaneous (noisy) measurements of radio signal strength information from multiple tags for estimating object locations. We formulate a new lightweight task-based trajectory planning method-LAVAPilot-with a greedy evaluation strategy and a void functional formulation to achieve situational awareness to maintain a safe distance from objects of interest. Conceptually, we embed our intuition of moving closer to reduce the uncertainty of measurements into LAVAPilot instead of employing a computationally intensive information gain based planning strategy. We employ LAVAPilot and the sensor to build a lightweight aerial robot platform with fully embedded autonomy for jointly tracking and planning to track and locate multiple VHF radio collar tags used by conservation biologists. Using extensive Monte Carlo simulation-based experiments, implementations on a single board compute module, and field experiments using an aerial robot platform with multiple VHF radio collar tags, we evaluate our joint planning and tracking algorithms. Further, we compare our method with other information-based planning methods with and without situational awareness to demonstrate the effectiveness of our robot executing LAVAPilot. Our experiments demonstrate that LAVAPilot significantly reduces (by 98.5%) the computational cost of planning to enable real-time planning decisions whilst achieving similar localization accuracy of objects compared to information gain based planning methods, albeit taking a slightly longer time to complete a mission.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源