论文标题
因此,$(n)$ spin顶点模型
On SO$(N)$ spin vertex models
论文作者
论文摘要
我们描述了$ d_k $代数旋转顶点型号的玻尔兹曼权重。因此,我们找到了任何$ n $的$(n)$ spin顶点型号,完成了前面发现的$ b_k $ case。我们进一步检查了$(n)$型号遵守量子代数,即Birman-Murakami-Wenzl(BMW)代数,用于三个块,其中包括BMW代数为子代数,包括四个和五个街区。在五个块的情况下,$ b_4 $型号被证明可以满足二十个新的关系。 $ D_6 $模型显示出遵守两个其他关系。
We describe the Boltzmann weights of the $D_k$ algebra spin vertex models. Thus, we find the $SO(N)$ spin vertex models, for any $N$, completing the $B_k$ case found earlier. We further check that the real (self-dual) SO$(N)$ models obey quantum algebras, which are the Birman-Murakami-Wenzl (BMW) algebra for three blocks, and certain generalizations, which include the BMW algebra as a sub-algebra, for four and five blocks. In the case of five blocks, the $B_4$ model is shown to satisfy additional twenty new relations, which are given. The $D_6$ model is shown to obey two additional relations.