论文标题
使用热内核进行半监督学习的图形卷积网络
Graph Convolutional Networks using Heat Kernel for Semi-supervised Learning
论文作者
论文摘要
图卷积网络在图形结构化数据上的半监督学习中获得了显着的成功。基于图的半佩斯学习的关键是捕获图形结构施加的节点上标签或特征的平滑度。以前的方法,光谱方法和空间方法致力于将图形卷积定义为相邻节点上的加权平均值,然后学习图形卷积内核,以利用平滑度来提高基于图的半固定学习的性能。一个开放的挑战是如何确定适当的社区,以反映在图形结构中表现出的平滑度相关信息。在本文中,我们提出了GraphHeat,利用热内核来增强低频滤波器并在图表上的信号变化中实现平滑度。 GraphHeat在热扩散下利用目标节点的局部结构,以灵活地确定其相邻的节点,而没有以前方法遭受的顺序限制。 GraphHeat实现最新的最新结果,可以完成三个基准数据集的基于图的半监督分类:Cora,Citeseer和PubMed。
Graph convolutional networks gain remarkable success in semi-supervised learning on graph structured data. The key to graph-based semisupervised learning is capturing the smoothness of labels or features over nodes exerted by graph structure. Previous methods, spectral methods and spatial methods, devote to defining graph convolution as a weighted average over neighboring nodes, and then learn graph convolution kernels to leverage the smoothness to improve the performance of graph-based semi-supervised learning. One open challenge is how to determine appropriate neighborhood that reflects relevant information of smoothness manifested in graph structure. In this paper, we propose GraphHeat, leveraging heat kernel to enhance low-frequency filters and enforce smoothness in the signal variation on the graph. GraphHeat leverages the local structure of target node under heat diffusion to determine its neighboring nodes flexibly, without the constraint of order suffered by previous methods. GraphHeat achieves state-of-the-art results in the task of graph-based semi-supervised classification across three benchmark datasets: Cora, Citeseer and Pubmed.