论文标题

结合运行时信息的近乎最佳的反应性合成

Near-Optimal Reactive Synthesis Incorporating Runtime Information

论文作者

Bharadwaj, Suda, Vinod, Abraham P., Dimitrova, Rayna, Topcu, Ufuk

论文摘要

我们考虑最佳反应综合的问题 - 计算满足动态环境中任务规范的策略,并优化性能指标。我们将仅在运行时可用的任务信息纳入策略综合,以提高性能。利用此类时间变化信息的现有方法需要在线重新合成,这在实时应用程序中在计算上是不可行的。在本文中,我们将一组与候选实例(预先指定的代表性信息方案)相对应的策略进行了合成。然后,我们提出了一种新颖的切换机制,以在运行时动态切换,同时确保满足所有安全性和livese目标。我们还表征性能次优的界限。我们在两个示例中演示了我们的方法 - 机器人运动计划,在其中实时更新了机器人目标位置的可能性,以及用于城市空气流动性的空中交通管理问题。

We consider the problem of optimal reactive synthesis - compute a strategy that satisfies a mission specification in a dynamic environment, and optimizes a performance metric. We incorporate task-critical information, that is only available at runtime, into the strategy synthesis in order to improve performance. Existing approaches to utilising such time-varying information require online re-synthesis, which is not computationally feasible in real-time applications. In this paper, we pre-synthesize a set of strategies corresponding to candidate instantiations (pre-specified representative information scenarios). We then propose a novel switching mechanism to dynamically switch between the strategies at runtime while guaranteeing all safety and liveness goals are met. We also characterize bounds on the performance suboptimality. We demonstrate our approach on two examples - robotic motion planning where the likelihood of the position of the robot's goal is updated in real-time, and an air traffic management problem for urban air mobility.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源