论文标题

细菌活性物质中时空顺序的粘弹性控制

Viscoelastic control of spatiotemporal order in bacterial active matter

论文作者

Liu, Song, Shankar, Suraj, Marchetti, M. Cristina, Wu, Yilin

论文摘要

主动物质由通过消耗能量产生机械工作的单元组成。例子包括生活系统,例如细菌和生物组织的组装,由分子电机驱动的生物聚合物以及合成自propelled颗粒的悬浮液。该领域的一个核心问题是了解和控制空间和时间上主动组件的自组织。大多数活性系统表现出是由协调空间结构和活动剂运动的相互作用或单个振荡动力学的时间同步的相互作用所介导的。同时控制空间和时间组织更具挑战性,通常需要复杂的相互作用,例如反应扩散层次结构或基因设计的细胞电路。在这里,我们报告了一种新颖而简单的方法,可以同时控制细菌活性物质的空间和时间自我组织。通过限制活跃的细菌悬浮液并操纵单个宏观参数,即悬浮液的粘弹性,我们发现细菌液首先在太空中自组织成毫米尺度的旋转涡旋;然后显示临时组织,因为巨型涡流以可调频率定期切换其全局手性,让人联想到扭转摆(一种自动驱动的摆)。将实验与主动物质模型相结合,我们用主动强迫和粘弹性应激松弛之间的相互作用来解释这种惊人的行为。我们的发现提高了对复杂流体中细菌行为的理解,并首次在实验中证明了流变特性可以利用以控制活性物质流。结合致动,我们可调的自我振荡细菌涡流可用作软机器人和微流体泵送运动的“时钟”。

Active matter consists of units that generate mechanical work by consuming energy. Examples include living systems, such as assemblies of bacteria and biological tissues, biopolymers driven by molecular motors, and suspensions of synthetic self-propelled particles. A central question in the field is to understand and control the self-organization of active assemblies in space and time. Most active systems exhibit either spatial order mediated by interactions that coordinate the spatial structure and the motion of active agents or the temporal synchronization of individual oscillatory dynamics. The simultaneous control of spatial and temporal organization is more challenging and generally requires complex interactions, such as reaction-diffusion hierarchies or genetically engineered cellular circuits. Here, we report a novel and simple means to simultaneously control the spatial and temporal self-organization of bacterial active matter. By confining an active bacterial suspension and manipulating a single macroscopic parameter, namely the viscoelasticity of the suspending fluid, we have found that the bacterial fluid first self-organizes in space into a millimeter-scale rotating vortex; then displays temporal organization as the giant vortex switches its global chirality periodically with tunable frequency, reminiscent of a torsional pendulum - a self-driven one. Combining experiments with an active matter model, we explain this striking behavior in terms of the interplay between active forcing and viscoelastic stress relaxation. Our findings advance the understanding of bacterial behavior in complex fluids, and demonstrate experimentally for the first time that rheological properties can be harnessed to control active matter flows. Coupled with actuation, our tunable self-oscillating bacterial vortex may be used as a "clock" for locomotion of soft robots and microfluidic pumping.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源