论文标题
Symmetrynet:学习预测单视RGB-D图像的3D形状的反射和旋转对称性
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images
论文作者
论文摘要
我们研究了单视RGB-D图像的3D形状对称性检测问题,其中严重缺少的数据使几何检测方法不可行。我们提出了一个端到端的深神经网络,该网络能够预测输入RGB-D图像中存在的3D对象的反射和旋转对称性。但是,直接训练一个对称预测的深层模型,可以迅速遇到过度拟合的问题。我们采用多任务学习方法。除了对称轴预测外,我们的网络还经过训练以预测对称对应。特别是,鉴于RGB-D图像中存在的3D点,我们的每个3D点输出其对称对应物对应于特定的预测对称性。此外,我们的网络能够检测给定形状的多个类型的多个对称性。我们还基于单视RGB-D图像来贡献3D对称检测的基准。基准上的广泛评估表明,从对称轴预测和对应物估计的高精度方面,我们的方法具有强大的概括能力。特别是,我们的方法在处理具有较大形状,多对称组成以及新颖对象类别的未见对象实例方面具有鲁棒性。
We study the problem of symmetry detection of 3D shapes from single-view RGB-D images, where severely missing data renders geometric detection approach infeasible. We propose an end-to-end deep neural network which is able to predict both reflectional and rotational symmetries of 3D objects present in the input RGB-D image. Directly training a deep model for symmetry prediction, however, can quickly run into the issue of overfitting. We adopt a multi-task learning approach. Aside from symmetry axis prediction, our network is also trained to predict symmetry correspondences. In particular, given the 3D points present in the RGB-D image, our network outputs for each 3D point its symmetric counterpart corresponding to a specific predicted symmetry. In addition, our network is able to detect for a given shape multiple symmetries of different types. We also contribute a benchmark of 3D symmetry detection based on single-view RGB-D images. Extensive evaluation on the benchmark demonstrates the strong generalization ability of our method, in terms of high accuracy of both symmetry axis prediction and counterpart estimation. In particular, our method is robust in handling unseen object instances with large variation in shape, multi-symmetry composition, as well as novel object categories.