论文标题

有效地深入学习非本地特征用于高光谱图像分类

Efficient Deep Learning of Non-local Features for Hyperspectral Image Classification

论文作者

Shen, Yu, Zhu, Sijie, Chen, Chen, Du, Qian, Xiao, Liang, Chen, Jianyu, Pan, Delu

论文摘要

基于深度学习的方法,例如卷积神经网络(CNN),已经证明了它们在高光谱图像(HSI)分类中的效率。这些方法可以自动学习本地补丁中的光谱空间歧视特征。但是,对于HSI中的每个像素,它不仅与附近的像素有关,而且还与远离自身的像素具有连接。因此,为了合并远程上下文信息,提出了具有有效的非本地模块的深度全卷积网络(FCN),称为ENL-FCN,用于HSI分类。在提议的框架中,深FCN将整个HSI视为输入,并在局部接受场中提取光谱空间信息。有效的非本地模块作为学习单元嵌入网络中,以捕获远程上下文信息。与传统的非本地神经网络不同,远程上下文信息是在专门设计的纵横道路路径中提取的,以进行计算效率。此外,通过使用经常性操作,每个像素的响应都是从HSI的所有像素中汇总的。我们提出的ENL-FCN的好处是三重:1)有效地合并了远程上下文信息,2)可以以插件方式将有效的模块自由嵌入深层神经网络中,而3)它的学习参数较少,需要较少的计算资源。在三个流行的HSI数据集上进行的实验表明,与几个领先的HSI深层神经网络相比,所提出的方法以较低的计算成本实现了最先进的分类性能。

Deep learning based methods, such as Convolution Neural Network (CNN), have demonstrated their efficiency in hyperspectral image (HSI) classification. These methods can automatically learn spectral-spatial discriminative features within local patches. However, for each pixel in an HSI, it is not only related to its nearby pixels but also has connections to pixels far away from itself. Therefore, to incorporate the long-range contextual information, a deep fully convolutional network (FCN) with an efficient non-local module, named ENL-FCN, is proposed for HSI classification. In the proposed framework, a deep FCN considers an entire HSI as input and extracts spectral-spatial information in a local receptive field. The efficient non-local module is embedded in the network as a learning unit to capture the long-range contextual information. Different from the traditional non-local neural networks, the long-range contextual information is extracted in a specially designed criss-cross path for computation efficiency. Furthermore, by using a recurrent operation, each pixel's response is aggregated from all pixels of HSI. The benefits of our proposed ENL-FCN are threefold: 1) the long-range contextual information is incorporated effectively, 2) the efficient module can be freely embedded in a deep neural network in a plug-and-play fashion, and 3) it has much fewer learning parameters and requires less computational resources. The experiments conducted on three popular HSI datasets demonstrate that the proposed method achieves state-of-the-art classification performance with lower computational cost in comparison with several leading deep neural networks for HSI.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源