论文标题

中红外光谱成像的自适应压缩抽样

Adaptive Compressive Sampling for Mid-infrared Spectroscopic Imaging

论文作者

Lotfollahi, Mahsa, Tran, Nguyen, Berisha, Sebastian, Gajjela, Chalapathi, Han, Zhu, Mayerich, David, Reddy, Rohith

论文摘要

Minfrared光谱成像(MIRSI)是针对数字组织病理学的无标签,生化定量技术的新兴类别。常规的组织病理学依赖于改变组织颜色的化学染色。这种方法是定性的,通常使组织病理学检查主观且难以量化。 MIRSI通过利用天然分子对比的定量和可重复的成像来解决这些挑战。傅立叶变换红外(FTIR)成像是最著名的MIRSI技术,面临两个挑战,阻碍了其广泛采用:数据收集速度和空间分辨率。最近的技术突破,例如光热miRSI,可以改善空间分辨率。但是,这是以采集速度为代价的,这对于临床组织样本是不切实际的。本文引入了一种自适应压缩抽样技术,通过利用光谱和空间稀疏性来减少高光谱数据采集时间。该方法确定了最有用的空间和光谱特征,将快速张量的完成算法集成以重建百万像素尺度图像,并在提供与新的光热方法相当的空间分辨率的同时,证明了比FTIR成像的速度优势。

Minfrared spectroscopic imaging (MIRSI) is an emerging class of label-free, biochemically quantitative technologies targeting digital histopathology. Conventional histopathology relies on chemical stains that alter tissue color. This approach is qualitative, often making histopathologic examination subjective and difficult to quantify. MIRSI addresses these challenges through quantitative and repeatable imaging that leverages native molecular contrast. Fourier transform infrared (FTIR) imaging, the best-known MIRSI technology, has two challenges that have hindered its widespread adoption: data collection speed and spatial resolution. Recent technological breakthroughs, such as photothermal MIRSI, provide an order of magnitude improvement in spatial resolution. However, this comes at the cost of acquisition speed, which is impractical for clinical tissue samples. This paper introduces an adaptive compressive sampling technique to reduce hyperspectral data acquisition time by an order of magnitude by leveraging spectral and spatial sparsity. This method identifies the most informative spatial and spectral features, integrates a fast tensor completion algorithm to reconstruct megapixel-scale images, and demonstrates speed advantages over FTIR imaging while providing spatial resolutions comparable to new photothermal approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源