论文标题

在有向图上的信号处理

Signal Processing on Directed Graphs

论文作者

Marques, Antonio G., Segarra, Santiago, Mateos, Gonzalo

论文摘要

本文概述了有向图(Digraphs)上信号处理(SP)的当前景观。方向性是许多现实世界(信息,运输,生物学)网络所固有的,它在处理和从网络数据中学习中起着不可或缺的作用。因此,我们对Digraphs SP的最新进展进行了全面的综述,通过与可用于无向图的结果进行比较,讨论新兴方向,与机器学习中的相关领域建立联系,并在统计数据中与因果关系建立联系,并说明其实际相关性与及时应用。为此,我们从测量(正统)信号表示及其图形频率解释开始,基于新颖的digraphs信号变化度量。然后,我们继续进行过滤,这是推导Digraphs SP的全面理论的中心部分。实际上,通过基于滤波器的生成信号模型的镜头,我们探索了一个统一的框架,以研究反问题(例如,对网络上的采样和反卷积),随机信号的统计分析以及淋巴结观察的digraphs的拓扑推断。

This paper provides an overview of the current landscape of signal processing (SP) on directed graphs (digraphs). Directionality is inherent to many real-world (information, transportation, biological) networks and it should play an integral role in processing and learning from network data. We thus lay out a comprehensive review of recent advances in SP on digraphs, offering insights through comparisons with results available for undirected graphs, discussing emerging directions, establishing links with related areas in machine learning and causal inference in statistics, as well as illustrating their practical relevance to timely applications. To this end, we begin by surveying (orthonormal) signal representations and their graph frequency interpretations based on novel measures of signal variation for digraphs. We then move on to filtering, a central component in deriving a comprehensive theory of SP on digraphs. Indeed, through the lens of filter-based generative signal models, we explore a unified framework to study inverse problems (e.g., sampling and deconvolution on networks), statistical analysis of random signals, and topology inference of digraphs from nodal observations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源