论文标题

可以解释的面部识别

Explainable Face Recognition

论文作者

Williford, Jonathan R., May, Brandon B., Byrne, Jeffrey

论文摘要

可以解释的面部识别是解释为什么面部匹配者面对面的问题。在本文中,我们为可解释的面部识别提供了第一个全面的基准评估和基线评估。我们定义了一种名为``indpainting Game''的新评估协议,该协议是95名受试者的3648个三胞胎(探针,伴侣,非伴侣)的策划组,通过在综合上涂上诸如鼻子,eyebrows,eyebrows,eyeprows或嘴巴形成熟食的非男人的选择,这是有不同的。可解释的面部匹配器的任务是生成网络注意力图,该映射最能说明探针图像中的哪些区域与配偶图像匹配,而不是针对每个三重圈的贴有非男友。这提供了量化图像区域有助于面对匹配的基础真理。此外,我们在此数据集上提供了一个全面的基准测试,该基准比较了五种最新方法,以在三个面部匹配者的面部识别中进行网络注意力。该基准包括两种用于网络关注的新算法,称为Subtree EBP和基于密度的输入采样(DISE),它们的表现超过了最大的范围。最后,我们在新型图像上显示了这些网络注意力技术的定性可视化,并探讨了这些可解释的面部识别模型如何改善面部匹配者的透明度和信任。

Explainable face recognition is the problem of explaining why a facial matcher matches faces. In this paper, we provide the first comprehensive benchmark and baseline evaluation for explainable face recognition. We define a new evaluation protocol called the ``inpainting game'', which is a curated set of 3648 triplets (probe, mate, nonmate) of 95 subjects, which differ by synthetically inpainting a chosen facial characteristic like the nose, eyebrows or mouth creating an inpainted nonmate. An explainable face matcher is tasked with generating a network attention map which best explains which regions in a probe image match with a mated image, and not with an inpainted nonmate for each triplet. This provides ground truth for quantifying what image regions contribute to face matching. Furthermore, we provide a comprehensive benchmark on this dataset comparing five state of the art methods for network attention in face recognition on three facial matchers. This benchmark includes two new algorithms for network attention called subtree EBP and Density-based Input Sampling for Explanation (DISE) which outperform the state of the art by a wide margin. Finally, we show qualitative visualization of these network attention techniques on novel images, and explore how these explainable face recognition models can improve transparency and trust for facial matchers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源