论文标题
Anakatabatic惯性:PSO的粒子自适应惯性
Anakatabatic Inertia: Particle-wise Adaptive Inertia for PSO
论文作者
论文摘要
在整个粒子群优化的过程中,粒子惯性被确定为研究可能改进方法的方法的重要方面。作为我们以前的研究的延续,我们提出了一种基于单个粒子的适应性改善的新型惯性重量适应性的广义技术,称为anakatabatic惯性。该技术允许对对应于粒子增加或降低适应度的每个粒子的惯性重量值,即以粒子的上升(分析)或下降(katabatic)运动为条件。对CEC 2014测试套件的30个测试功能进行了荟萃优化的惯性重量控制框架。进行的程序产生了四个Anakatabatic模型,每种PSO方法都使用了两个模型(标准PSO和TVAC-PSO)。基准测试结果表明,使用拟议的Anakatabatic惯性模型可靠地提高了标准PSO准确性的适度提高(最低适应性最低降低了高达0.09个数量级),而TVAC-PSO的相当大的改进(最终健身最小降低了0.59个数量级的最小值),最多可降低高达0.59个级数),最多没有任何不良对方法的影响。
Throughout the course of the development of Particle Swarm Optimization, particle inertia has been established as an important aspect of the method for researching possible method improvements. As a continuation of our previous research, we propose a novel generalized technique of inertia weight adaptation based on individual particle's fitness improvement, called anakatabatic inertia. This technique allows for adapting inertia weight value for each particle corresponding to the particle's increasing or decreasing fitness, i.e. conditioned by particle's ascending (anabatic) or descending (katabatic) movement. The proposed inertia weight control framework was metaoptimized and tested on the 30 test functions of the CEC 2014 test suite. The conducted procedure produced four anakatabatic models, two for each of the PSO methods used (Standard PSO and TVAC-PSO). The benchmark testing results show that using the proposed anakatabatic inertia models reliably yield moderate improvements in accuracy of Standard PSO (final fitness minimum reduced up to 0.09 orders of magnitude) and rather strong improvements for TVAC-PSO (final fitness minimum reduced up to 0.59 orders of magnitude), mostly without any adverse effects on the method's performance.