论文标题

$ k $ -submodular函数最大化的精确切割平面方法

An Exact Cutting Plane Method for $k$-submodular Function Maximization

论文作者

Yu, Qimeng, Küçükyavuz, Simge

论文摘要

自然而重要的概括 - $ k $ - 示例性 - 适用于具有$ k $参数的设置功能,并出现在广泛的应用程序中,例如基础设施设计,机器学习和医疗保健。在本文中,我们研究了$ k $ - submodular目标功能的最大化问题。我们提出了有效的线性不等式,即$ k $ - 单位不平等,对于任何$ k $ submodular函数的射仪。这类不平等现象是对众所周知的子模型不平等的新概括。我们表明,最大化$ k $ -submodular功能等于求解具有指数$ $ k $ submodular不平等现象的混合成员线性程序。在延迟约束生成框架中使用此表示形式,我们设计了第一种确切的算法,这不是一种完整的枚举方法,可以解决一般的$ k $ -submodular modibular最大化问题。我们对多类传感器放置问题的计算实验表明,我们算法在约束的非线性$ k $ -submodular modimization问题中的效率,没有其他替代性紧凑的混合式线性配方可用。计算实验表明,我们的算法显着优于唯一可用的精确解决方案方法 - 详尽的搜索。可以使用我们的方法在十分钟内解决需要超过13年来解决的问题。

A natural and important generalization of submodularity -- $k$-submodularity -- applies to set functions with $k$ arguments and appears in a broad range of applications, such as infrastructure design, machine learning, and healthcare. In this paper, we study maximization problems with $k$-submodular objective functions. We propose valid linear inequalities, namely the $k$-submodular inequalities, for the hypograph of any $k$-submodular function. This class of inequalities serves as a novel generalization of the well-known submodular inequalities. We show that maximizing a $k$-submodular function is equivalent to solving a mixed-integer linear program with exponentially many $k$-submodular inequalities. Using this representation in a delayed constraint generation framework, we design the first exact algorithm, that is not a complete enumeration method, to solve general $k$-submodular maximization problems. Our computational experiments on the multi-type sensor placement problems demonstrate the efficiency of our algorithm in constrained nonlinear $k$-submodular maximization problems for which no alternative compact mixed-integer linear formulations are available. The computational experiments show that our algorithm significantly outperforms the only available exact solution method -- exhaustive search. Problems that would require over 13 years to solve by exhaustive search can be solved within ten minutes using our method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源