论文标题
一种用于预测表观基因组基因表达的动力学系统模型
A dynamical system model for predicting gene expression from the epigenome
论文作者
论文摘要
基因调节是重要的基本生物学过程。基因表达的调节是通过包括表观遗传过程(例如DNA甲基化)在内的多种方法来管理的。了解表观遗传变化在基因表达中的作用是分子生物学的基本问题。来自表观遗传数据的基因表达值的预测具有巨大的研究和临床潜力。尽管进行了积极的研究,但迄今为止的研究集中在使用统计模型来预测甲基化数据的基因表达。相反,动态系统可用于生成模型,以使用表观遗传学数据和基因调节网络(GRN)预测基因表达,这也可以用作机械假设。在这里,我们提出了一种新型的随机动力学系统模型,该模型可预测给定GRN中基因的甲基化数据的基因表达水平。我们使用真实的患者数据和从可靠的参考来源创建的GRN对模型进行评估。用于数据集准备的软件,模型参数拟合和预测生成以及报告可在\ verb | https://github.com/kordk/stoch_epi_lib |。
Gene regulation is an important fundamental biological process. The regulation of gene expression is managed through a variety of methods including epigenetic processes (e.g., DNA methylation). Understanding the role of epigenetic changes in gene expression is a fundamental question of molecular biology. Predictions of gene expression values from epigenetic data have tremendous research and clinical potential. Despite active research, studies to date have focused on using statistical models to predict gene expression from methylation data. In contrast, dynamical systems can be used to generate a model to predict gene expression using epigenetic data and a gene regulatory network (GRN) which can also serve as a mechanistic hypothesis. Here we present a novel stochastic dynamical systems model that predicts gene expression levels from methylation data of genes in a given GRN. We provide an evaluation of the model using real patient data and a GRN created from robust reference sources. Software for dataset preparation, model parameter fitting and prediction generation, and reporting are available at \verb|https://github.com/kordk/stoch_epi_lib|.