论文标题
软件定义的空调集成的车辆网络中的能源感知图形任务调度
Energy-Aware Graph Task Scheduling in Software-Defined Air-Ground Integrated Vehicular Networks
论文作者
论文摘要
软件定义的空中集成车辆(SD-AGV)网络已成为有前途的范式,该网络实现了灵活的地面资源共享,以支持具有重型计算开销的无人机的创新应用。在本文中,我们研究了SD-AGV网络中的车辆云辅助任务调度问题,其中无人机携带的计算密集型任务,并通过基于图形的表示形式对车辆云进行建模。将图形任务的每个组件映射到可行的车辆,同时在最小化无人机的任务完成时间,能源消耗和移动车辆中的数据交换成本之间取消了权衡,我们将问题作为混合式非直线编程问题提出,这是NP-HARD。此外,与保留任务结构相关的约束构成了针对动态车辆拓扑的子图同构问题的解决,这进一步使算法设计变得更加复杂。我们通过将模板(组件和车辆之间可行的映射)与搜索传输功率分配分开,提出了一种有效的解耦方法。对于前者,我们提出了搜索所有具有低计算复杂性的同构亚图的有效算法。对于后者,我们通过应用$ p $ norm和凸优化技术来引入功率分配算法。广泛的仿真表明,考虑到各种问题大小的基准方法,所提出的方法的表现优于基准方法。
The Software-Defined Air-Ground integrated Vehicular (SD-AGV) networks have emerged as a promising paradigm, which realize the flexible on-ground resource sharing to support innovative applications for UAVs with heavy computational overhead. In this paper, we investigate a vehicular cloud-assisted task scheduling problem in SD-AGV networks, where the computation-intensive tasks carried by UAVs, and the vehicular cloud are modeled via graph-based representation. To map each component of the graph tasks to a feasible vehicle, while achieving the trade-off among minimizing UAVs' task completion time, energy consumption, and the data exchange cost among moving vehicles, we formulate the problem as a mixed-integer non-linear programming problem, which is Np-hard. Moreover, the constraint associated with preserving task structures poses addressing the subgraph isomorphism problem over dynamic vehicular topology, that further complicates the algorithm design. Motivated by which, we propose an efficient decoupled approach by separating the template (feasible mappings between components and vehicles) searching from the transmission power allocation. For the former, we present an efficient algorithm of searching for all the isomorphic subgraphs with low computation complexity. For the latter, we introduce a power allocation algorithm by applying $p$-norm and convex optimization techniques. Extensive simulations demonstrate that the proposed approach outperforms the benchmark methods considering various problem sizes.