论文标题

$ {\ mathbb r}^k $的音量保留动作的渐近链接

Asymptotic linking of volume-preserving actions of ${\mathbb R}^k$

论文作者

Chira, José L. Lizarbe, J, Paul A. Schweitzer S.

论文摘要

我们将V. Arnold的渐近线链接理论扩展到$ {\ Mathbb r}^3 $和$ s^3 $中的两个卷中的流量,以保留$ {\ Mathbb r}^k $ {\ Mathbb r}^k $和$ {\ Mathb r}^\ ell $ { $ {\ mathbb r}^k $,带有封闭式的单数$ \ ell $ -dimensional submanifold in $ {\ Mathbb r}^n $,其中$ n = k+\ ell+1 $。我们还将生物 - 萨瓦特公式扩展到更高的维度。

We extend V. Arnold's theory of asymptotic linking for two volume preserving flows on a domain in ${\mathbb R}^3$ and $S^3$ to volume preserving actions of ${\mathbb R}^k$ and ${\mathbb R}^\ell$ on certain domains in ${\mathbb R}^n$ and also to linking of a volume preserving action of ${\mathbb R}^k$ with a closed oriented singular $\ell$-dimensional submanifold in ${\mathbb R}^n$, where $n=k+\ell+1$. We also extend the Biot-Savart formula to higher dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源