论文标题

低属地层的差分和层次层面的地层的最大性质

Maximal gonality on strata of differentials and uniruledness of strata in low genus

论文作者

Bud, Andrei

论文摘要

我们证明,对于Abelian Stratum $ \ MATHCAL {H} _G(μ)$ g $ $ g $的非遗传元素中的通用元素,基础曲线具有最大的性质。当分区$μ$具有正条目时,我们将此结果扩展到二次地层的情况。结果,我们推断出,当$μ$ $μ$是16的阳性分区时,所有非遗传性成分均为$ \ MATHCAL {h} _9(μ)$,而所有非遗传组件的$ \ Mathcal {h}^2_g(μ)$ $ $ $是$ $ $ $ $ $ 4,则所有非遗传组件是$ $ $ $ $ $ 4 g \ leq5 $或$ g = 6 $和$ l(μ)\ geq 4 $。

We prove that for a generic element in a nonhyperelliptic component of an abelian stratum $\mathcal{H}_g(μ)$ in genus $g$, the underlying curve has maximal gonality. We extend this result to the case of quadratic strata when the partition $μ$ has positive entries. As a consequence we deduce that all nonhyperelliptic components of $\mathcal{H}_9(μ)$ are uniruled when $μ$ is a positive partition of 16 and all nonhyperelliptic components of $\mathcal{H}^2_g(μ)$ are uniruled when $μ$ is a positive partition of $4g-4$ and either $3\leq g\leq5$ or $g=6$ and $l(μ)\geq 4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源